skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gordon, Eric R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rapid species radiations present difficulties for phylogenetic reconstruction due to lack of phylogenetic information and processes such as deep coalescence/incomplete lineage sorting and hybridization. Phylogenomic data can overcome some of these difficulties. In this study, we use anchored hybrid enrichment (AHE) nuclear phylogenomic data and mitochondrial genomes recovered from AHE bycatch with several concatenated and coalescent approaches to reconstruct the poorly resolved radiation of the New Zealand cicada species in the generaKikihiaDugdale andMaoricicadaDugdale. Compared with previous studies using only three to five Sanger‐sequenced genes, we find increased resolution across our phylogenies, but several branches remain unresolved due to topological conflict among genes. Some nodes that are strongly supported by traditional support measures like bootstraps and posterior probabilities still show significant gene and site concordance conflict. In addition, we find strong mito‐nuclear discordance; likely the result of interspecific hybridization events in the evolutionary history ofKikihiaandMaoricicada. 
    more » « less
  2. null (Ed.)
    Abstract Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ‘relict’ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America. 
    more » « less